In situ observation of short- and long-timescale material property evolution under extreme conditions

Cody Andrew Dennett

November 2020

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

In situ observation of short- and long-timescale material property evolution under extreme conditions

Cody Andrew Dennett

November 2020

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

In situ observation of short- and longtimescale material property evolution under extreme conditions

MS&T 2020 – November, 2020

Cody A. Dennett

Materials Science and Engineering Department Idaho National Laboratory cody.dennett@inl.gov

This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the presentation do not necessarily represent the views of the U.S. DOE or the United States Government.

Collaborators

Benjamin R. Dacus (MIT) Trevor Clark (SNL) Christopher M. Barr (SNL) Yanwen Zhang (ORNL) Khalid Hattar (SNL) Michael P. Short (MIT)

material performance is challenged under extreme environments

temperature corrosives radiation pressure fatigue

material performance is challenged under extreme environments

temperature

corrosives

radiation

pressure fatigue

micro-scale

Pure Cu 35 MeV Cu⁶⁺ 400°C

micro-scale

macro-scale

in situ characterization

material structure

material properties

in situ characterization

material structure

material properties

in situ TEM Sandia Ion Beam Lab

in situ Raman spectroscopy JANUUS-Saclay

in situ characterization

material structure

material properties

acoustic oscillations return elastic mechanical properties

acoustic oscillations return elastic mechanical properties

grating decay returns thermal transport properties

material	single crystal {111} Cu
ion species	Cu ⁶⁺
ion energy	35 MeV
temperature	400°C
spot size	0.19 cm ²
beam current	100-250 nA
target doses (peak)	0, 5, 10, 30, 50, 100 dpa

35 MeV Cu⁶⁺ in Cu at 400°C

material	single crystal {111} Cu
ion species	Cu ⁶⁺
ion energy	35 MeV
temperature	400°C
spot size	0.19 cm ²
beam current	100-250 nA
target doses (peak)	0, 5, 10, 30, 50, 100 dpa

35 MeV Cu⁶⁺ in Cu at 400°C

HAADF STEM* swelling confirmation

in situ ion irradiation TGS (I³TGS) beamline at the Sandia Ion Beam Lab

NOTICE

Dennett et al., *NIMB* **440** (2019) 126-138 doi: 10.1016/j.nimb.2018.10.025

I³TGS target chamber

long- and short-timescale defect effects in Ni-based solid solution alloys

- high strength
- thermal stability
- wear resistance
- corrosion resistance
- irradiation tolerance

bright-field TEM of alloys irradiated with 1.5 MeV Ni⁺ to 60 dpa peak at 500°C

ion beam

direction

equiatomic composition	single/ polycrystal	source
Ni	SC {001}	commercial
NiFe	SC {001}	ORNL
NiCoCr	SC {001}	ORNL
NiFeCoCr	SC {001}	ORNL
NiFeCoCrMn	polycrystal	ORNL

in situ long-timescale irradiation test matrix

equiatomic composition	single/ polycrystal	source
Ni	SC {001}	commercial
NiFe	SC {001}	ORNL
NiCoCr	SC {001}	ORNL
NiFeCoCr	SC {001}	ORNL
NiFeCoCrMn	polycrystal	ORNL

pre-irradiation TGS characterization used to identify acoustic polarization for *in situ* testing

in situ long-timescale irradiation test matrix

surface angle	<100>{001}
ion species	Ni ⁵⁺
ion energy	31 MeV
temperature	550°C
TGS wavelength	4.55 μm
peak dose	60 dpa
peak dose rate	1.6-1.8 x 10 ⁻³ dpa/s
measurement time	35 sec
measurement interval	60 sec
exposure time per sample	9.5-10.5 hours

void swelling at high temperatures and high doses

31 MeV Ni⁵⁺ in Ni at 550°C

Pure Ni

NiFe

NiCoCr

NiFeCoCr

NiFeCoCrMn

`instantaneous' defect generation affects mechanical properties

surface angle	<100>{001}
ion species	Ni ⁶⁺
ion energy	31 MeV
temperature	500°C
TGS wavelength	4.55 μm
dose rates	[1, 2, 5, 10, 20] x 10 ⁻⁴ dpa/s
measurement interval	~30 sec
annealing time between impulses	~30 min

instantaneous defect effects at varying dose rates

31 MeV Ni⁵⁺ in Ni at 550°C

example current and temperature records for NiCoCr

beam current lowered in steps between impulse experiments

higher beam heating and larger temperature fluctuations during high flux experiments

Pure Ni

background defect accumulation continually evolving and not fully annealing

transient defect populations stiffen the elastic modulus, inversely correlated with dose rate

NiFe

blue \rightarrow dose rate high to low red \rightarrow dose rate low to high

transient defect populations soften/reduce the elastic modulus, magnitude directly correlated with dose rate

NiCoCr

transient accumulation time longer than for other alloys

elastic constant reduction greatest observed of any alloy chemistry studied

NiFeCoCr

blue \rightarrow dose rate high to low red \rightarrow dose rate low to high

initial lattice stiffening is irreversible, softening observed at identical dose rates following saturation

short-timescale defect accumulation observations and question

stiffening vs. softening in different alloys defect type variation?

limitations of subsequent irradiation impulses underlying background evolution? higher temperatures needed for annealing?

in situ means interesting failure

13Cr-7Al-23Zr-30Mo-24Nb-4Ta

refractory multiple principle element alloy

- in situ ion irradiation TGS beamline available for use at Sandia National Labs
- thermoelastic material properties explored directly in situ under extreme conditions at both short and long timescales

This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the presentation do not necessarily represent the views of the U.S. DOE or the United States Government.

- *in situ* ion irradiation TGS beamline available for use at Sandia National Labs
- thermoelastic material properties explored directly in situ under extreme conditions at both short and long timescales

contact: cody.dennett@inl.gov

sample in place

high temp. operation

